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Abstract—A general schematic flow representation that explains the mechanism of inviscid gas separa-
tion in time-dependent and three-dimensional gas flows is presented. The scenario of gas flow separation
from a body surface or a mixing layer is described as a vortex which induces in the flowfield a velocity
opposing to that of the main flow, thus decelerating it. Within the framework of this scenario the analyt-
ical conditions of separation are obtained for conical and self-similar gas flows which coincide with the
results of experimental and numerical simulations.
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So far, the question about the nature of the forces inducing ideal gas separation and the process of
formation of these forces has arisen amidst the specialists in gasdynamics. There are no problems in real
gases: here, the viscous forces decelerate the gas flowing over a body surface and the elevated pressure
“pushes off” the boundary layer from the surface. In the problems, where an ideal gas separates, the gas flow
also decelerates but the deceleration mechanism is different: under certain initial or boundary conditions in
the flow there arises a vortex which induces in the flowfield a velocity opposing to that of the oncoming
(main) flow, thus decelerating it. The intensity of this vortex can depend both on the body corner shape
[1, 2] and on the angle of yaw [3–5], that is, on the forces which push it from the surface. Depending on
the vortex intensity, it floats up at one or another height relative to the body surface or the medium line
with zero longitudinal velocity in the mixing layer. In the linear formulation this vortex represents a vortical
singularity of the Ferri point type. It should be noted that the class of separated flows induced by inertia
forces is considerably wider than that due to viscosity forces. Most frequently, these separations occur on
collision of gas flows with different densities, when tangential or contact discontinuities are formed and roll
into a vortex under the action of the appearing moments of forces. This can occur both on a body surface
[1–5] and in an open space, as, for example, on the generation of tornados. Another example is furnished by
the complicated pattern of the formation of vortices (microseparations) in a mixing layer subjected to a weak
harmonic wave, when the arisen forces alternatively “push” the generated vortices downward and upward
relative to the central mixing layer and lead to flow turbulization [6, 7]. In the case of an incompressible fluid
the forces inducing inviscid separation are the source of the tangential discontinuity instability described in
the classical Kelvin–Helmholtz problem [8]. In the natural conditions (in problems with account for viscous
effects) separations produced by both viscous and inviscid effects can be simultaneously observable. In this
case, the separations at the expense of the inertia forces are global. Thus, as shown in [4], provided that
the preconditions for inviscid separation are created, it is realized above the boundary layer and the vortices
produced by boundary layer separation.

In this study, we present the results concerning separation of a two-dimensional unsteady gas flow over
a convex corner. The results of analytical and numerical investigations are presented and compared with the
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Fig. 1. Schematic representation of the formation of the forces inducing inviscid gas flow separation; (a) on the interaction
between counter-streaming flows; (b) formation of a tangential discontinuity on a body surface; and (c) in the mixing layer.

experiment. The separation pattern proposed in the study is shown to give an exact solution of problem [2].

The second problem analyzed pertains to steady three-dimensional flow past a V-wing solved in [3–5],
where the existence of separated flow was experimentally and numerically shown for large angles of attack
and yaw. For this problem the scheme proposed makes it possible to analytically derive the separation
conditions obtained experimentally and numerically in the above-mentioned studies.

The results obtained within the framework of the ideal gas model extend our theoretical knowledge about
the mechanisms of separated flow development. At the same time, they are of practical interest in explaining
the results obtained in numerically solving the problem of flow past bodies.

1. FORMULATION OF THE PROBLEM

The mechanism of the generation of forces inducing vortex formation in an inviscid gas flow is proposed
and the known solutions are analyzed on its basis (Fig. 1). It is shown that in the vicinity of point E on
the body surface flows with different parameters are generated in regions 1 and 2 (Fig. 1a), when initial or
boundary conditions of the problem are changed. At the next moment, in accordance with the conservation
laws [9], regions 3 and 4 separated by a tangential discontinuity are formed on collision of the flows (Fig. 1b).
Here, it is not important in which region point E lies but of fundamental importance is the behavior of the
derivative Vy normal to the surface in regions 3 and 4. In most cases its sign does not reverse and then
separation is absent. When the sign of the derivative changes, the flow detaches from the surface in region 4
(as in the figure) and attaches to it in region 3. Therefore, at the expense of the pressure difference in the
vicinity of point E a force rolling the tangential discontinuity is generated. As a result, a vortex is formed
and floats up above the surface. A more complicated pattern of the separated flow formation takes place in
the case of a mixing layer.

In Fig. 1c the pattern of vortex formation is presented for the problem of the shock wave he incidence on
a flat plate bc in a supersonic gas flow [7]. The problem is time-dependent and the fluctuations arising on
the shock wave passage through the vortices arrive in the form of compression waves at the boundary layer
separation point d through its subsonic part. On the interaction between the boundary layer and the mixing
layer (the upper boundary of the separated boundary layer) vortices are generated. An analysis of the flow
pattern shows that the vortices oscillate near the central mixing layer and, correspondingly, the quantity Vy

changes the sign at a point within the mixing layer.
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Fig. 2. Separated unsteady gas flow around a convex corner; (a) separationless flow and (b) separated flow.

2. INVISCID GAS SEPARATION IN THE TIME-DEPENDENT PROBLEM
OF FLOW PAST A CONVEX CORNER

We will consider the problem of sudden gas flow past a convex corner (Fig. 2), when the gas starts sud-
denly flow along the side O1O at a supersonic velocity Q. The main problem parameters are the pressure P,
the density ρ , the entropy S, and the gas flow velocity Q, as well as the Mach number M = Q/

√
Pγ/ρ and

the adiabatic exponent γ . The quantities P and ρ are normalized by their freestream values; in any flow
region the parameters are taken with the subscript corresponding to its number. The problem is self-similar;
for this reason, in what follows we will consider the flow patterns at the moment t = 1 for different values
of the angle θ . In the case of small θ the disturbed gas region ABE1CD (Fig. 2a) is bounded by the limiting
characteristics AB and CD and the isobaric curve BC. Inside the region there is a weak contact discontinuity
EE1. For the given M and θ the gas parameters in regions 1 and 2 can be determined from the well-known
formulas [8]. The tangential velocity along the surface in region 2 (relative to the vertex O) is Q2 = Qcosθ ,
while the entropy values in regions 1 and 2 are equal to its freestream value.

With increase in θ the flow parameters in regions 1 and 2 start to considerably differ: the velocity Q1

increases, whereas Q2 diminishes. The region ABCD is bounded by strong discontinuities AB and DC.
Inside the region a tangential discontinuity EE1 of finite intensity is formed. The flow one-dimensionality
in the wall region makes it possible to determine the flow parameters in regions 3 and 4 from the formulas
of the arbitrary one-dimensional discontinuity breakdown [9]. The point E is singular, of the Ferri point
type [10]; here, at small values of θ isentropic lines converge, including the isentrope EE1 along which the
total velocity suffers a discontinuity (Fig. 2a). The presence of a finite velocity discontinuity leads to the
formation of vortex F in the vicinity of point E . With increase in θ to 55∘ the vortex F floats up above the
surface (Fig. 2b). The gas rotating clockwise around the vortex F in the wall region AE partially decelerates
the gas flowing from point A to point E . With increase in θ the intensity and velocity of the shock wave
AB increase, so that its velocity relative to the vertex becomes equal to the gas flow velocity in region 1:
D13 = Q1. Precisely this condition determines the value of the angle θk at which the oncoming gas stream
separates from the vertex. The angle θs is determined from the condition M3 = 1, which in the self-similar
variables describes the floating-up of the vortical Ferri singularity and is in agreement with the experimental
data [11] and the results of the numerical modeling [1, 2]. Thus, there are two conditions that allow one to
determine the angles θk and θs, namely D13 = Q1 and M3 = 1. They are necessary for gas flow separation
from the corner vertex: firstly, the disturbances from the base region at preseparation angles must reach the
corner vertex and, secondly, the flow in the separation zone must be subsonic.

We will consider how the inviscid separation pattern proposed is applicable in our problem. We will
determine the normal derivative on the body surface in the vicinity of point E and analyze its behavior on
the basis of the time-dependent Euler equations.
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Fig. 3. Vortex formation in the time-dependent problem; small (a) and large (b) values of the vertex angle of the convex
corner.

In the self-similar variables ξ = x/t and η = y/t the equations of continuity, momentum, and entropy
conservation take the form [8]:

(ρU)ξ + (ρV )η + 2ρ = 0,

UUξ + VUη + U + Pξ/ρ = 0,

UVη + VVη + V + Pη/ρ = 0,

USξ + V Sη = 0,

(2.1)

where U and V are the velocity components in the movable (ξ , η) coordinate system, which are related
with the velocity components in the (x, y) coordinate system by the equations U = u − ξ and V = v − η .

We will consider the flow in the vicinity of point E (Fig. 2a). On the body surface the normal velocity
component V = 0 and the equations are simplified

ρξU + ρ(Uξ + Vη + 2) = 0,

U(1 + Uξ ) + Pξ/ρ = 0,

UVξ + Pη/ρ = 0,

Pξ = a2ρξ .

(2.2)

Substituting the quantity Uξ from the second equation (2.2) into the continuity equation we obtain

Vη =−1 − Pξ (M2
3 − 1)/ρU, (2.3)

where the quantity M3 = U/a is the Mach number on the OD surface in region 3.
As can be seen from Eq. (2.3), the quantity V = −η at M3 = 1. Then from the definition V = v − η

it follows that in the fixed coordinate system (x, y) the normal velocity component v = 0. At M3 ∕= 1 the
behavior of the quantity Pξ must be taken into account.

An analysis of the pressure behavior in the vicinity of point E shows that for θ similar in value with
θs the quantity Pξ > 0. Then from Eq. (2.3) it follows that at M3 > 1 vy < 0, that is, the singular point
squeezes up against the surface OD. Contrariwise, at M3 < 1 we have vy > 0 and the singular point floats
up above the surface. This can be seen in Fig. 3 in which the density fields are presented for the cases in
which the angle θ is greater than θs by a small value (Fig. 3a) and the angle θ ≈ θk (Fig. 3b). In our case, in
region 4 the quantity M4 > 1, while in region 3 M3 < 1, so that, in accordance with the separation scheme,
a compression wave occurs in region 4 and an expansion wave is generated in region 3. This force rolls up
the tangential discontinuity with the formation of a vortex which floats up above the surface and induces a
velocity field rotating clockwise, counter the main stream.
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Thus, in this time-dependent problem the change of the sign of the normal derivative of the velocity to
the body surface leads to flow separation from the surface, while the condition M3 = 1 (vy = 0) determines
the flow separation angle θs which is the exact solution of the problem.

3. SEPARATION OF THE THREE-DIMENSIONAL GAS FLOW AROUND A V-WING

We will consider a V-wing with straight edges AB and BC and the central chord B′E (see Fig. 4, in which
a section located at a certain distance from the leading edges is presented). The vee angle ABC of the wing
is 90∘.

Let a supersonic flow at a velocity U0 be incident on the wing set at the angles of attack α and yaw β .
The velocity can be expanded into the components B′F , or the velocity directed along the central chord, and
DF , or the transverse velocity perpendicular to BE . Owing to the presence of the transverse velocity the flow
around the wing is nonsymmetric. In this case, the intensities of the shocks Ab and Cc are different. The gas
flow along the cantilever AB moves toward the chord BE at a greater velocity than along the cantilever BC.
Thus, with increase in the yaw angle (with increase in the intensities of the contact discontinuities bS′ and
cS′) the point S′ progressively removes from point B with which it coincides in the symmetric wing flow.
At certain angles of attack and yaw point S′ separates from the surface [3–5]. The characteristic regions
formed in this problem on the interaction between gasdynamic discontinuities are marked by numbers 1 to
5 in Fig. 4. We consider the regimes of flow around wings with supersonic edges.

In Fig. 5 for the initial parameters of the problems (M = 3, α = −35∘, and β = 13∘) the results for the
flow around the V-wing are presented in the case in which on the windward wing side there occurs separation
in the form of the floating-up of the “vortical” Ferri singularity (point S′). The transverse distribution of the
gasdynamic functions over the cantilever surfaces is presented in Fig. 5a, where the vertical line 6 presents
the separation boundary. Here, the general flow pattern (Fig. 5b, the entropy field) is presented, together
with the fragments of the isentrope fields in the flow region 4 (Fig. 5c). Clearly that in the separation region a
local pressure P maximum is realized (curve 1), while the density ρ (2) and the entropy S (3) vary jumpwise.
In this case, the transverse velocity u(4) = 0. The broken lines 5 on the edges of the left and right cantilever
mark the values of the pressure and the density obtained from the exact relations on oblique shocks.

In accordance with the separation scheme proposed, we will determine the conditions under which the
separation flow is realized in this problem.

We will write the equation of gas motion in the spherical coordinate system R, θ , ϕ with the velocity
components u, v, and w directed along these axes [10]; in Fig. 1b it is shown how this coordinate system
is fitted to the wing surface. For the conical flow, with account for the fact that d/dR = 0 along a ray, we
obtain

(ρvsinθ)θ + (ρw)ϕ + 2ρusinθ = 0,

vuθ + wcscθuϕ − v2 − w2 = 0,

vvθ + wcscθvϕ + uv − w2 cotθ =−P/ρ ,
(vwθ + wcscθwϕ)sinθ + w(usinθ + vcos θ) =−Pϕ/ρ ,
vSθ + wcscθSϕ = 0.

(3.1)

We will write Eqs. (3.1) on the wing surface, where w = 0. As a result, we obtain

(ρvsinθ)θ + ρwϕ + 2ρusin θ = 0,

vuθ − v2 = 0,

vvθ + uv =−Pθ/ρ ,
vwθ sinθ =−Pϕ/ρ ,
vSθ = 0.

(3.2)

We will express the derivative wϕ normal to the wing surface in terms of the flow parameters. Depending
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Fig. 4. General pattern of flow around a V-shaped wing; (a) gasdynamic discontinuities (Ab, bc, cC, ab, and cd are shock
waves and bS′ and cS′ are tangential discontinuities) and characteristic regions (1–5) and (b) spherical coordinate system.

Fig. 5. Results of the calculations of separated flow around a wing at M = 3, α = −35∘, and β = 13∘; (a) flow parameter
distributions over the cantilever surfaces in the transverse direction; Π = P (curve 1), ρ (2), S (3), and u (4); (5) is the
comparison of the pressure and the density with their exact values, and (6) is the separation boundary; (b) entropy field;
and (c) fragments of the entropy field.

on the sign of this derivative, the gas either squeezes up against or detaches from the surface. Since the
vortex singularity moves with the gas velocity, this behavior is also pertinent to it.

From the first equation (3.2) we obtain

wϕ =−sinθ(ρθ v/ρ + vθ + 2u) − vcos θ . (3.3)

Using the third equation and the condition Pθ = a2ρθ , where a is the speed of sound, from the fifth
equation (3.2) we will determine the quantity ρθ and substitute it into Eq. (3.3). Finally, since in the conical
flow the relation usin θ + vcosθ = 0 is fulfilled along a ray [10], we determine wϕ in the form:

wϕ =−sinθ(vθ + u)(1 − v2/a2). (3.4)

From Eq. (3.4) we obtain that wϕ = 0, when either 1− v2/a2 = 0 or vθ + u = 0. The calculations showed
that the former expression does not turn to zero. From the equality of the latter expression to zero it follows
that in the third equation of system (3.2) the quantity Pθ = 0. Therefore, in this case a local extremum
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is realized on a ray lying on the wing surface. In fact, the data of [3, 4] and the results of the numerical
modeling in this study show that here a pressure maximum is realized.

An analysis of the separation pattern in Fig. 5 and the data of [1–3] indicates that the mechanism of invis-
cid gas separation from a surface is the same in the cases of three-dimensional conical and two-dimensional
time-dependent (self-similar) gas flows. In both cases, upon the collision of two gas flows there appears a ve-
locity component normal to the surface, which separates the vortical Ferri singularity from the surface. This
vortex, whose intensity depends on the angles α and β and the Mach number M, induces on the windward
side of a cantilever a velocity directed oppositely to that of the gas flowing from the cantilever sides.

Summary. The mechanism of the formation of the forces leading to separation of supersonic inviscid
gas flows in gasdynamic problems is schematically described. In accordance with this scheme, the gas flow
separation conditions are obtained for the problems of time-dependent and three-dimensional flows past
bodies. They correspond to the results of numerical and experimental investigation.

The study was carried out with the support of the Russian Foundation for Basic Research (project
No. 14-01-00848).
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