
J. Fluid Mech. (2017), vol. 815, pp. 388–414. c© Cambridge University Press 2017
doi:10.1017/jfm.2017.62

388

On steady non-breaking downstream waves and
the wave resistance – Stokes’ method

Dmitri V. Maklakov1,† and Alexander G. Petrov2

1Kazan (Volga region) Federal University, N.I. Lobachevsky Institute of Mathematics and Mechanics,
Kremlyovskaya 35, Kazan, 420008, Russia

2Institute for Problems in Mechanics of the Russian Academy of Sciences, prosp. Vernadskogo 101,
block 1, Moscow, 119526, Russia

(Received 19 August 2016; revised 22 January 2017; accepted 23 January 2017)

In this work, we have obtained explicit analytical formulae expressing the wave
resistance of a two-dimensional body in terms of geometric parameters of nonlinear
downstream waves. The formulae have been constructed in the form of high-order
asymptotic expansions in powers of the wave amplitude with coefficients depending
on the mean depth. To obtain these expansions, the second Stokes method has been
used. The analysis represents the next step of the research carried out in Maklakov
& Petrov (J. Fluid Mech., vol. 776, 2015, pp. 290–315), where the properties of
the waves have been computed by a numerical method of integral equations. In
the present work, we have derived a quadratic system of equations with respect to
the coefficients of the second Stokes method and developed an effective computer
algorithm for solving the system. Comparison with previous numerical results obtained
by the method of integral equations has been made.
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1. Introduction
Recently, Maklakov & Petrov (2015a, hereinafter referred to as paper 1) deduced

several exact formulae for the wave resistance of a two-dimensional body that moves
horizontally at a constant speed in a channel of finite depth. The formulae were
derived under assumptions that in the body-fixed reference frame the flow is steady
and irrotational and the capillarity effect on the free surface is negligibly small. It
was demonstrated that to compute the wave resistance, it is enough to know the
wave properties far downstream of the body. If, for example, the length, mean depth
and amplitude of the waves are given, then the wave resistance can be determined.
Although in paper 1 the computations of the waves were carried out only numerically
by the method of self-generating converging meshes suggested in Maklakov (2002),
at the end of the paper, it was indicated that by using the obtained results, it would
be possible to deduce analytical formulae which connect the wave resistance with the
wavelength, wave depth and amplitude. One of the ways to do so is the use of the
second Stokes method, which has been applied in the presented paper.
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Stokes (1847, 1880) proposed two analytical methods of calculating the form
of steady, irrotational waves of finite amplitude on water of finite depth. The first
method (see Stokes 1847) involves the expansion of the complex velocity potential
w= φ + iψ as a function of the space complex coordinate z= x+ iy in powers of a
small perturbation parameter responsible for the wave steepness. Later, he saw that
the calculations would be simplified by expressing z as a function of w (see Stokes
1880). This is the second Stokes method, where the complex potential w is taken as
an independent variable.

In the presented paper, we apply the second Stokes method to construct high-order
analytical expansions in powers of the dimensionless wave amplitude a for the wave
resistance and other wave properties. The coefficients of these expansions depend only
on the dimensionless mean depth ha. The reference length for non-dimensionalization
is λ/(2π), where λ is the wavelength. The application of the method requires
determining the so-called Stokes coefficients, which are the Fourier coefficients for
the function z(w). In the literature, there is a considerable number of works devoted
to this subject.

Stokes (1880) computed the solution to O(b3) for finite depth and to O(b5) for
the particular case of infinite depth, where b is the first Fourier coefficient in the
expansion of z(w). Wilton (1914) carried the infinite depth computation up to O(b10),
but, as was noticed by Schwartz (1974), Wilton’s expansions have errors starting with
his eighth-order results. De (1955) has published a fifth-order solution for finite depth.
It is to be noted that De’s expansions are in powers of b with coefficients depending
on the mean depth ha.

It is worth mentioning also the work by Fenton (1985), although he used not
the second but the first Stokes method. Fenton developed the fifth-order theory for
waves of finite depth, and in his investigation the expansions are in powers of a with
coefficients which are functions of ha. In the presented paper, the expansions for the
wave properties are of the same structure, and because exact asymptotic expansions
are independent of the method by which they have been obtained, we have a good
opportunity for comparison.

It seems that the works by Wilton (1914), De (1955) and Fenton (1985) involve the
order of solution which is the practical limit of hand calculations. The first computer
algorithm was developed by Schwartz (1974). As in Stokes (1880), Schwartz used
the boundary condition of constant pressure on the free surface and obtained a cubic
system of equations with respect to the Stokes coefficients. Expanding the latter in
powers of a certain perturbation parameter, the algorithm allowed Schwartz to find
the coefficients sequently. Schwartz used initially the first Stokes coefficient b as the
perturbation parameter and demonstrated that at given values of b, the solution is
not always unique. He showed also that this deficiency disappears by replacing b
with the dimensionless wave amplitude a. The computations for finite depth were
carried out by Schwartz up to O(b70) and O(a48). For the special case of infinite depth,
the solution was found up to O(a117). For this particular case, Schwartz presented
also explicit analytical expansions of the Stokes coefficients up to O(a9). In these
expansions, the coefficients are rational numbers, which were obtained by recognizing
repeating patterns in the computer-produced decimals.

Cokelet (1977) applied the Schwartz algorithm with another perturbation parameter,
suggested by Longuet-Higgins (1975), and made an extensive tabulation of the
wave properties for different depth-to-wavelength ratios. The highest order of the
perturbation parameter was 110. Rather recently, Dallaston & McCue (2010), using
a modern desktop computer and exact arithmetics, which eliminates any loss of
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accuracy due to accumulation of round-off error, reproduced the Schwartz and
Cokelet computations for the infinite depth case to an order of 300.

Thus the computer algorithms applied in the papers by Schwartz (1974), Cokelet
(1977) and Dallaston & McCue (2010) are based on solving a cubic system of
equations for the Stokes coefficients. Longuet-Higgins (1978) was the first to notice
that after some transformations, the cubic system can be reduced to a quadratic
one. He derived such quadratic systems both for the infinite and finite depth cases
and developed for infinite depth a computer algorithm for finding expansions of the
coefficients in powers of any perturbation parameter.

For infinite depth, analogous systems of quadratic equations were deduced later
by Balk (1996) and Petrov (2009) from the Hamilton variational principle with the
Lagrangian L= T − V , where T and V are the kinetic and potential energies of one
wave period. For finite depth, a quadratic system of equations was deduced also in the
paper by Dyachenko, Zakharov & Kuznetsov (1996) on the basis of a combination of
the canonical formalism, introduced by Zakharov (1968), and conformal mapping of
the flow region onto a horizontal strip.

It is to be noted that in the works by Longuet-Higgins (1978) and Dyachenko
et al. (1996), the quadratic systems of equations for the case of finite depth were
deduced but not solved. In Dyachenko et al. (1996), the authors confined themselves
to expressing the second Fourier coefficient in terms of the first one and finding
the second approximation for the dispersion relation. Longuet-Higgins (1978, p. 262)
noticed that for finite depth the system deduced by him is not pure quadratic and
developed the computer algorithm only for infinite depth.

In this work, we consider the steady wave train generated by a moving body on
water of finite depth, and to compute the properties of the downstream waves, we
derive also a system of quadratic equations with respect to the Stokes coefficients. To
do so, we make use of the Luke variational principle (see Luke 1967) and demonstrate
that for steady periodic waves the principle has a pure geometric interpretation, in the
sense that the functional to be varied includes only geometric properties of periodic
domains which are candidates for the gravity wave domain to be found. So the
problem of steady periodic gravity waves can be reformulated in pure geometric
terms (see § 2).

In § 3, by making use of this geometric interpretation, we obtain a compact
system of pure quadratic equations with respect to the Stokes coefficients and one
complementary parameter, which is the Bernoulli constant as it was defined in
Schwartz (1974) and Cokelet (1977). It is worthwhile to notice that, formally, the
same system can be obtained from the Hamilton variational principle (see Maklakov
& Petrov 2015b), but for finite depth the Lagrangian L= T − V should be extended
to provide the fixed mean depth ha. In this case, the complementary parameter,
mentioned above, contains a Lagrange multiplier, and to prove that this parameter
coincides with the Bernoulli constant is not a simple task.

In § 4, we describe an algorithm for finding the Stokes coefficients and in § 5, using
some formulae from paper 1, derive asymptotic expansions for the wave resistance and
other wave properties in powers of the wave amplitude a with coefficients depending
on the mean depth ha.

We should emphasize that among numerous works devoted to computing the
progressive finite depth waves by the Stokes methods, there is only one in which
exact analytical expansions are expressed in terms of the physical parameters, a and
ha. This is the work of Fenton (1985), where the maximum order of the expansions
is five. The same maximum order, five, was achieved by De (1955), but instead of a,
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FIGURE 1. (a) One period of a λ-periodic domain in the physical z-plane, (b) plane of
the complex potential w= φ + iψ , (c) parametric ζ -plane.

De used the first Stokes coefficient b, whose physical meaning is not quite clear. To
obtain the order of expansions higher than five, all authors specified the parameter
responsible for the wave depth as a number, rational or real (see, e.g. Schwartz 1974;
Cokelet 1977; Dallaston & McCue 2010). This leads to an asymptotic series in powers
of a certain perturbation parameter with coefficients which are also numbers. To get
the latter, the authors need to run some computer programme, so such approaches
cannot be considered to be purely analytical. The main goal of the presented paper
is to obtain exact analytical expansions of order much higher than five by making
use of the second Stokes method.

It is also to be noted that the results for the wave resistance obtained in the paper
are correct not only for a body that moves under a free surface but also for a plate
planing on a water surface without spray formation, for a bump on a horizontal bottom
or for a free-surface flow over a system of concentrated singularities, such as vortices
and doublets. So the results are independent of the type of flow disturbance under the
assumption that on the free surface there are no wavebreaking and sprays. The only
requirement is that the levels of the bottom far upstream and far downstream of the
disturbance are equal.

2. Geometric interpretation of the Luke variational principle for steady periodic
gravity waves
Consider a steady two-dimensional irrotational flow of an ideal incompressible fluid

in an infinite λ-periodic domain bounded by a λ-periodic line y=η(x) from above and
by a horizontal bottom y= 0 from below. One period Ωz of such a flow is shown in
figure 1(a). The function η(x) satisfies the conditions

η(x) > 0, η(x+ λ)= η(x). (2.1a,b)

Let φ(x, y) be the potential of the flow. For the harmonic function φ(x, y), we have
the following boundary conditions[

∂φ

∂n

]
y=η(x)
= 0,

[
∂φ

∂n

]
y=0

=−
[
∂φ

∂y

]
y=0

= 0, (2.2a,b)

where n is the unit outer normal to the boundaries of the flow domain. The velocity
vector q and its components u, v are

q =∇φ, u= ∂φ
∂x
, v = ∂φ

∂y
, (2.3a−c)
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where ∇ is the nabla operator. The volume flux Q is

Q=
∫ η(x)

0
u(x, y) dy. (2.4)

We assume that Q> 0, i.e. the fluid moves from left to right.
In the flow domain, the components of the velocity vector u(x, y), v(x, y) are
λ-periodic functions with respect to the variable x, but the potential φ(x, y) increases
by an increment C (by a circulation) on every period:

φ(x+ λ, y)− φ(x, y)=C. (2.5)

For a fixed upper boundary the flow is defined uniquely by specifying the circulation C.
Consider now a system of two-dimensional irrotational periodic waves of wavelength
λ propagating with phase velocity c under the influence of gravity g without change
of form from right to left on the surface of a fluid of finite depth. In the wave-fixed
frame of reference the flow appears to be steady. Hence, we have a λ-periodic
flow which moves from left to right, and its potential φ(x, y) satisfies the boundary
conditions (2.2).

In addition to (2.2), on the unknown free surface y = η(x) the Bernoulli equation
should be fulfilled: [

1
2 q2 + gy

]
y=η(x) = R, (2.6)

where q=|∇φ| is the modulus of the velocity vector q and R is the Bernoulli constant.
Thus, the steady gravity wave problem is fully determined by the boundary conditions
(2.2), (2.6) at specified values of λ, C and R.

For the λ-periodic flows, consider the Luke Lagrangian, which we take as the
integral of pressure over one period (see Luke 1967):

L= 1
ρ

∫ λ
0

dx
∫ η(x)

0
p(x, y) dy, (2.7)

where ρ is the density of the fluid, p is the pressure. At fixed R and C by virtue of
the Bernoulli equation,

p
ρ
= R− q2

2
− gy, (2.8)

so the functional L depends only on η(x) because q(x, y)= |∇φ| is fully determined
by the boundary condition (2.2). Hence, we can write

L[η] =
∫ λ

0
dx
∫ η(x)

0

(
R− 1

2
|∇φ|2 − gy

)
dy. (2.9)

Varying the functional L[η] at a fixed R, we obtain

δL[η] =
∫ λ

0

(
R− 1

2
q2[x, η(x)] − gη(x)

)
δη(x) dx−

∫∫
Ωz

∇(δφ) · ∇φ dx dy, (2.10)

where δφ(x, y) is the dependent variation of the potential φ(x, y) corresponding to the
independent variation δη(x).
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Applying Green’s first identity to the second integral in (2.10) and taking into
account that the function φ(x, y) is harmonic, we get∫∫

Ωz

∇(δφ) · ∇φ dx dy=
∮
∂Ωz

δφ
∂φ

∂n
ds, (2.11)

where ∂Ωz is the boundary of Ωz, n is the unit outer normal to ∂Ωz, ds is the line
element along ∂Ωz. By virtue of (2.2), the contour integrals over y= η(x) and y= 0
vanish. Further, the integrals along the vertical lines x= 0 and x= λ cancel each other.
Indeed, because the circulation C is fixed,

δφ(λ, y)− δφ(0, y)= δC= 0. (2.12)

Besides, the function u(x, y) is λ-periodic with respect to x, and on the vertical lines,
we have [

∂φ

∂n

]
x=0

=−u(0, y),
[
∂φ

∂n

]
x=λ
= u(λ, y)= u(0, y). (2.13a,b)

Thus, the variation

δL[η] =
∫ λ

0

{
R− 1

2
q2[x, η(x)] − gη(x)

}
δη(x) dx (2.14)

under the constrain that C is fixed. It follows from (2.14) that for λ-periodic flows
with a fixed circulation C, the dynamic boundary condition (2.6) will be satisfied if
and only if δL[η]=0.

It is to be noted that for any λ-periodic flow∫∫
Ωz

q2(x, y) dx dy=CQ (2.15)

(see, e.g. paper 1, p. 297).
Let z = x + iy be the complex variable. In the plane w = φ + iψ , consider the

rectangle Ωw of length C and width Q, which corresponds to the flow period Ωz in
the physical z-plane (see figure 1a,b). By means of the function

ζ = r0 exp
(
−2πwi

C

)
, where r0 = exp

(
−2πQ

C

)
, (2.16)

we map conformally Ωw onto an annulus with an outer radius of unity and inner
radius of r0 (see figure 1b,c). It follows from (2.16) that

Q=− C
2π

log r0. (2.17)

Taking into account (2.9), (2.15) and (2.17), we come to the formula

L[η] =
∫ λ

0
dx
∫ η(x)

0
(R− gy) dy+ c2

aλ
2

4π
log r0, (2.18)
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394 D. V. Maklakov and A. G. Petrov

where

ca = C
λ
= 1
λ

∫ λ
0

u(x, y) dx (2.19)

is the averaged horizontal component of velocity at any level y = const. completely
within the fluid.

As in Longuet-Higgins (1975) and many other works, we non-dimensionalize all
flow parameters by choosing λ/(2π),

√
gλ/(2π) and ρ as the scales for length,

velocity and density, respectively. In what follows, all physical quantities will
be dimensionless with accordance to the chosen scales. Now, the dimensionless
wavelength is 2π, ρ = g= 1, the potential φ, circulation C and flux Q are scaled by√

gλ3/(2π)3. The relation between Q and ca is

Q=−ca log r0. (2.20)

The Luke functional L, scaled by gλ2/(2π)2, takes the form (for convenience, we
double the functional and divide it by λ)

L[η] = 2Rha −H2
a + c2

a log r0, (2.21)

where ha and Ha are the mean and root-mean-square depths:

ha = 1
2π

∫ 2π

0
η(x) dx, H2

a =
1

2π

∫ 2π

0
η2(x) dx. (2.22a,b)

Any 2π-periodic domain can be transformed into a doubly connected one by means
of the conformal mapping t = exp(iz). The conformal invariant M, that is defined as
the ratio r1/r2 (r1 > r2) of the radii of an annulus onto which the doubly connected
domain can be mapped, is called the modulus of the domain (see Bergman 1950,
p. 102). Taking into account that in our case M = 1/r0, one can see that the Luke
Lagrangian L in the form (2.21) contains only geometric characteristics of 2π-periodic
domains: the mean depths and the modulus. In terms of these geometric characteristics,
the variational principal can be formulated in the form of the following proposition.

PROPOSITION 1. A 2π-periodic domain is that of steady gravity waves if and only if

δL[η] = δ(2R ha −H2
a + c2

a log r0)= 0, (2.23)

where the parameters R and c2
a are fixed.

The parameter r0 is responsible for the wave depth-to-length ratio and ranges
between 0 and 1. For the waves of infinite depth r0=0, for the solitary waves r0 = 1.
Application of the functional (2.21) is especially convenient when the parameter r0
is given, as for example, in computations by Schwartz (1974) and Cokelet (1977).
Indeed, in this case, at fixed ca the variation δ(ca log r0)= 0, and the functional L[η]
is equivalent to

LM[η] = 2R ha −H2
a . (2.24)

So we can formulate the following proposition.
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FIGURE 2. One wave period in the physical z-plane.

PROPOSITION 2. In the class of 2π-periodic domains with the same modulus M =
1/r0, the domain of periodic gravity waves is that for which

δLM[η] = 0, (2.25)

where in (2.24) the parameter R is fixed.

We consider Propositions 1 and 2 as a geometric interpretation of the Luke
variational principle.

3. System of quadratic equations for the Stokes coefficients

Let us assume that the waves are symmetric and the axis of ordinate is that of
symmetry which goes through one of the wave crests. One period of the flow is shown
in figure 2. We shall seek the conformal mapping of the annulus (figure 1c) in the
parametric ζ -plane onto the flow domain of one wave period Ωz in the form

z(ζ )= 2π+ i log ζ − i log r0 + i
∞∑

n=1

yn

(
ζ n − r2n

0

ζ n

)
. (3.1)

The representation (3.1) is a variant of the second Stokes method, suggested by
Schwartz (1974). By virtue of the wave symmetry, the Stokes coefficients yn (n =
1, 2, 3 . . .) are real. Moreover, for the representation (3.1) the condition on the bottom
Imz= 0 is automatically fulfilled. The parametric equations of the free surface are

xs(γ )= 2π− γ −
∞∑

n=1

αnyn sin nγ , ys(γ )=− log r0 +
∞∑

n=1

βnyn cos nγ , (3.2a,b)

where αn = 1+ r2n
0 , βn = 1− r2n

0 , γ is the polar angle in the ζ -plane.
It is to be noted that the mapping (3.1) specifies a family of 2π-periodic domains

with the same modulus M= 1/r0. Thus, we are under the conditions of Proposition 2.
In appendix A to the paper, it will be proved that

ha = 1
2Λ− log r0, H2

a = 1
2(Λ1 +G)−Λ log r0 + log2 r0, (3.3a,b)
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396 D. V. Maklakov and A. G. Petrov

where

Λ=
∞∑

n=1

nβ2ny2
n, Λ1 =

∞∑
n=1

β2
n y2

n, G=
∞∑

k=2

yk

k−1∑
n=1

Γk−n,nynyk−n, (3.4a−c)

βn = 1− r2n
0 , Γm,n =mβnβ2m+n + nβmβm+2n. (3.5a,b)

Inserting (3.3) into (2.24) yields

LM = (R+ log r0)Λ− 1
2(Λ1 +G)− log2 r0 − 2R log r0. (3.6)

It follows from (3.4) and (3.5) that LM is a function of the Stokes coefficients yn
(n= 1, 2, 3, . . .) and the parameter r0. In accordance with (2.25) of Proposition 2, we
variate LM with respect to yn at fixed r0 to get

(nβ2nK − β2
n )yn = 1

2
∂G
∂yn

, n= 1, 2, 3, . . . , (3.7)

where

K = 2(R+ log r0). (3.8)

In appendix A to the paper, we shall prove that

∂G
∂yn
=

n−1∑
m=1

Γn−m,myn−mym + 2
∞∑

m=1

Γm,nym+nym. (3.9)

With allowance for (3.9) we deduce

(nβ2nK − β2
n )yn = 1

2

n−1∑
m=1

Γn−m,myn−mym +
∞∑

m=1

Γm,nym+nym, n= 1, 2, 3, . . . (3.10)

and at n= 1 the first sum in (3.10) vanishing. The system (3.10) is an infinite system
of quadratic equations with respect to the Stokes coefficients yn.

Equation (2.23) of Proposition 1 allows us to express c2
a in terms of the Stokes

coefficients. Indeed, fixing yn and varying only r0, we obtain

c2
a =−r0

∂LM

∂r0
=K −Λ+ r0

2

(
∂Λ1

∂r0
+ ∂G
∂r0
−K

∂Λ

∂r0

)
, (3.11)

where

∂Λ

∂r0
=
∞∑

n=1

n
dβ2n

dr0
y2

n,
∂Λ1

∂r0
=
∞∑

n=1

2βn
dβn

dr0
y2

n, (3.12a,b)

∂G
∂r0
=
∞∑

k=2

yk

k−1∑
n=1

dΓk−n,n

dr0
ynyk−n. (3.13)

The conformal mapping of the annulus Ωζ onto the rectangle Ωw in the w-plane
(see figure 1b,c) is determined by the equation

w= cai(log ζ − log r0 − 2πi). (3.14)
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If the depth of the fluid is infinite, then r0→ 0, βn= 1, Γm,n=m+ n, and the system
(3.10) becomes simpler:

(nK − 1)yn = n
2

n−1∑
m=1

yn−mym +
∞∑

m=1

(m+ n)ym+nym, n= 1, 2, 3, . . . (3.15)

Equation (3.11) transforms to the relation

c2
a =K −Λ. (3.16)

If r0→0, then log r0→−∞, and the formula of the conformal mapping (3.1) loses its
sense. To avoid this, it is enough to transfer the x-axes of the z-plane onto the mean
level of waves by setting z1 = z− iha. It follows from (3.3a) that log r0 =Λ/2− ha,
and then for the infinite depth,

z1(ζ )= 2π+ i log ζ − i
Λ

2
+ i

∞∑
n=1

ynζ
n. (3.17)

Thus, for the fixed parameters K = 2(R+ log r0) and r0, any non-trivial solution to
system (3.10) and formulae (3.1), (3.14) define a 2π-periodic wave domain and the
parametric equations for the complex potential w.

We should remark that Schwartz (1974), and later Cokelet (1977), located the
x-axes in the physical plane at the level d above the bottom, defining d as the depth
of uniform stream flowing with speed ca whose mass flux equals that of the wave.
Hence, d = Q/ca. Since Q = −ca log r0, it is clear that d = − log r0. This elucidates
the physical sense of the parameter K in system (3.10). Indeed, by virtue of (2.6)
and (3.8), on the free surface we have

[q2 + 2(y− d)]y=η(x) =K. (3.18)

This means that the parameter K is simply the Bernoulli constant as it was defined
and designated in Schwartz (1974) and Cokelet (1977). If in solving system (3.10)
we specify another parameter instead of K, for example, y1 as in Stokes (1880), then
(3.10) is a pure quadratic system of equations with respect to the unknowns K and yn.

4. Algorithm for solving system (3.10)
Let a be the amplitude of the wave (one half the vertical distance from the crest to

the trough). The goal of this section is to develop an algorithm for finding expansions
for the Stokes coefficient yn in powers of the wave amplitude a with coefficients
depending on the mean depth ha.

Because in system (3.10) the coefficients βn and Γm,n depend only on r2
0, it is

convenient to introduce

r= r2
0, and hence, βn = 1− rn. (4.1a,b)

Now in (3.10), the coefficients βn, Γm,n depend on r, formula (3.11) for c2
a transforms

to

c2
a =K −Λ+ r

(
∂Λ1

∂r
+ ∂G
∂r
−K

∂Λ

∂r

)
, (4.2)

and in (3.12), (3.13) we need to replace r0 by r.
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398 D. V. Maklakov and A. G. Petrov

At the first step, we follow Stokes (1880), namely, we assume that y1 = b, where
b is a specified small parameter. Since y1 is given, the parameter K is now unknown.
We shall seek the coefficients yn (n = 2, 3, . . .) and the parameter K in the form
of expansions in powers of b. Let an odd number N be the greatest power in these
expansions, then

K =
(N−1)/2∑

n=0

K2nb2n +O(bN+1), yi =
[(N−i)/2]∑

n=0

bi,2nbi+2n + o(bN), i= 2, 3, . . . ,N,

(4.3a,b)

where [ ] denotes the integer part of a real number, and the coefficients K2n and
bi,2n are to be found. The general number of unknown coefficients is (N + 1)2/4. The
procedure of their consecutive search appears as follows.

(i) We substitute the expressions for K and yi from (4.3) in the first N equations
of system (3.10) and expand each of the equations into the series in powers of b
up to the power N inclusively. We obtain N equations of the form Pi(b) = 0, i =
1, 2, . . . , N, where Pi(b) are N-degree polynomials in b. The coefficients of these
polynomials depend on the unknowns K2n and bi,2n. Equating these coefficients to zero,
we obtain a system of (N+ 1)2/4 equations with respect to (N+ 1)2/4 unknowns K2n

and bi,2n. It is to be noted that if N is chosen to be even, then the number of unknowns
will be greater by one than the number of equations, and not all coefficients will be
found.

(ii) We organize the external loop for j= 1, 2, . . . ,N, where j is the power of the
parameter b labelling the coefficients at bj in the polynomials Pi(b). Let the function
dxe designate a so called ‘ceiling’, i.e. the least integer greater than or equal to x. The
unknown coefficients K2n and bi,2n are determined by portions with dj/2e coefficients
in each portion. In the external loop over j, we organize the internal loop for k =
1, 2, . . . , dj/2e. For each k we find

ik = j− 2dj/2e + 2k. (4.4)

We equate the coefficient at bj in the polynomial Pik(b) to zero and from the obtained
equation we find either

Kj−1 (if j is odd and k= 1) or bik,j−ik (if j is even or k 6= 1), (4.5a,b)

and in so doing all equations for finding Kj−1 or bik,j−ik being linear.
Formulae (4.4), (4.5) define exactly the consecutive procedure of determining K2n,

bi,2n, and for each pair ( j, k), allow us to express a new unknown coefficient in terms
of the coefficients which have been already found. Note, by the way, that as follows
from (4.5a), if N is even, then K2N remains indefinite.

The above algorithm results in the expansions (4.3) with coefficients which are
rational functions of r= r2

0. Inserting these expansions into (4.2) gives

c2
a =

(N−1)/2∑
n=1

c2nb2n +O(bN+1), (4.6)

where the coefficients c2n are also rational functions of r.
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On steady downstream waves and the wave resistance – Stokes’ method 399

The second step is to express the parameter b in terms of the amplitude a and to
reconstruct the expansions (4.3) and (4.6) in powers of a. It follows from (3.2b) that

a−
(N+1)/2∑

n=1

β2n−1y2n−1 = 0. (4.7)

Taking into account that the coefficients y2n−1 contain only odd powers of b, we shall
seek the parameter b as

b=
(N+1)/2∑

n=1

b2n−1a2n−1. (4.8)

Substituting (4.8) into (4.7) and expanding the left-hand side of (4.7) in powers of a
up to the power N inclusively, we obtain an N-degree polynomial in odd powers of a
with (N + 1)/2 coefficients depending on the parameter r and the unknowns b2n−1.
Equating these coefficients to zero, we sequently find b1, b3, . . . , bN , which again turn
out to be rational functions of r. Now we reconstruct the expansions (4.3) and (4.6)
in powers of a by inserting in these expansions the expression (4.8) for b. As a result
we have

K =
(N−1)/2∑

n=0

K ′2na2n +O(aN+1), c2
a =

(N−1)/2∑
n=1

c′2na2n +O(aN+1), (4.9a,b)

yi =
[(N−i)/2]∑

n=0

b′i,2nai+2n + o(aN), i= 1, 2, . . . ,N, (4.10)

where the coefficients K ′2n, c′2n and b′i,2n are rational functions of r= r2
0.

The third and last step is to express the parameter r= r2
0 in terms of the mean depth

ha and to reconstruct the expansions (4.9) and (4.10) so that they would be in powers
of a with coefficients depending ha. Let ε = exp(−2ha). It follows from (3.3a) and
(3.4a) that

r− ε exp

(
(N−1)/2∑

n=1

nβ2ny2
n

)
= 0. (4.11)

We shall seek the dependence between r and ε in the form

r= ε
(

1+
(N−1)/2∑

n=1

ν2na2n

)
, (4.12)

where ν2n are unknown coefficients depending on ε= exp(−2ha).
Substituting (4.12) into (4.11) and expanding the left-hand side of (4.11) in powers

of a up to the power N − 1 inclusively, we obtain an (N − 1)-degree polynomial in
even powers of a with (N − 1)/2 non-zero coefficients depending on the parameter
ε and the unknowns ν2n. The coefficient at a0 in this polynomial is zero. Equating
the remainder coefficients to zero, we sequently find ν2, ν4, . . . , νN−1, which are now
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400 D. V. Maklakov and A. G. Petrov

rational functions of ε. Reconstruction of the expansions (4.9) and (4.10) by means
of (4.12) yields

K =
(N−1)/2∑

n=0

κ2na2n +O(aN+1), c2
a =

(N−1)/2∑
n=1

σ2na2n +O(aN+1), (4.13a,b)

yi =
[(N−i)/2]∑

n=0

ai,2nai+2n + o(aN), i= 1, 2, . . . ,N, (4.14)

where the coefficients κ2n, σ2n and ai,2n are known rational functions of ε= exp(−2ha).
This algorithm has been realized by means of Mathematica package which allows

symbolic computations and exact arithmetics to be applied (see Wolfram 2003). In so
doing, the routines Series, Coefficient and Solve have been used systematically. It is
worth noticing that steps 1 and 2 of the algorithm correspond to the formulations by
Schwartz (1974) and Cokelet (1977), when the depth d=− log r0 is fixed. The third
step correspond to the formulations by De (1955) and Fenton (1985), when instead of
the parameter d=− log r0, whose physical meaning is not quite clear, the mean wave
depth ha is specified.

We should remark that the first two steps can be programmed in such computer
languages as Fortran or C++, but the most time-consuming third step requires
necessarily the symbolic computations because in (4.11) we need to know the
coefficients yn as functions of r and a. Realizing all three steps, we have carried out
the computations at N = 21.

5. Expansions for the wave resistance and other wave properties in terms of the
geometric wave parameters: ha and a

Applying the algorithm of § 4, we obtain the expansions (4.13) and (4.14) in powers
of a with coefficients which are rational functions of the parameter ε= exp(−2ha). As
we shall see in what follows, finding the expansion for the wave resistance requires
the knowledge of the expansions for the mean potential energy V and the root-mean-
square velocity cb at the bottom in steady motion, which are defined as

V = 1
4π

∫ 2π

0
[η(x)− ha]2 dx, c2

b =
1

2π

∫ 2π

0
u2(ξ , 0) dξ . (5.1a,b)

It can be easily seen from the definitions of V and H2
a that V = (H2

a − h2
a)/2. This

relation and equations (3.3) yield

V = 1
4

(
Λ1 +G− Λ

2

2

)
. (5.2)

Using (3.4) and (4.14), we get the expansion for V . In so doing, the coefficients βn

and Γmn, which depend on r, should be also expanded in powers of a by means of
formula (4.12).

For the parameter c2
b, it is possible to prove the identity

c2
b + 2ha = 2R (5.3)
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On steady downstream waves and the wave resistance – Stokes’ method 401

(see equation (3.22) in paper 1). From this identity and equations (3.3a), (3.8) we
conclude that

c2
b =K −Λ, (5.4)

which allows us to find the expansion for c2
b.

Implementation of the algorithm of § 4 and the above manipulations leads to
expansions for the wave parameters c2

a, c2
b, V , Λ, which are needed to get the

expansion for the wave resistance. All these expansions are in powers of a with
coefficients which are rational functions of ε = exp(−2ha). Besides, the expansions
for c2

a, c2
b, V and Λ contain only even powers of a, moreover, they possess a

very useful feature: the numerators of their coefficients (but not denominators) are
so-called palindromic polynomials of ε. By definition, a polynomial Pn(ε) of degree
n is palindromic if

Pn(ε)= εnPn(1/ε). (5.5)

This feature allows us to shorten representations of polynomials by one-half, for
example,

P2(2, 3)= 2+ 3ε+ 2ε2, P3(2, 3)= 2+ 3ε+ 3ε2 + 2ε3, P4(1, 0, 4)= 1+ 4ε2 + ε4,

(5.6a−c)

and so on.
In appendix B to the paper, formulae (B 1)–(B 4) present the expansions for c2

a,
c2

b, Λ and V up to a6 (N = 7). In spite of the fact that we have carried out the
computations at N = 21, expansions for N > 9 become too long to be printed. For
example, the formula for c2

a at N = 21 after conversion to LaTeX takes approximately
75 kilobytes, i.e. approximately 25 journal pages. For completeness, an expansion for
the mean kinetic energy Tca , computed under the assumption that the waves propagate
with the speed ca in the bottom-fixed reference frame, is also presented by (B 5). The
expansion for Tca can be easily obtained from (3.3a) and formula (5.21) from the
paper by Cokelet (1977):

Tca = 1
2 c2

a(ha + log r0)= 1
4 c2

aΛ. (5.7)

In paper 1, we have derived formula (3.13) for the wave resistance Rw of a two-
dimensional body that moves horizontally at a constant speed c in a channel of finite
depth h. In dimensionless form, this formula can be written as

Rw = 3V + 3
2δ

2
1 + (h− c2)δ1, (5.8)

where δ1 = ha − h is the defect of levels (the difference between the mean level far
downstream and the undisturbed level far upstream). The scale for Rw in (5.8) is
ρgλ2/(2π)2. The formula has been derived under assumptions that in the body-fixed
reference frame the flow is steady and irrotational.

Assume that for the waves far downstream we know the mean depth ha and
amplitude a. The knowledge of these parameters is enough to compute all wave
properties, but to find the wave resistance by means of (5.8), we should determine
the parameters c and h. In a sense, this is an inverse problem: in the body-fixed
reference frame find the speed c and depth h of a uniform stream which without
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FIGURE 3. Sketches of subcritical flows (a), supercritical flows (b) and hydraulic
falls (c).

dissipation is able to create a given system of waves far downstream due to some
disturbance located in the stream.

By virtue of the fact that the Bernoulli constant R and the flow flux Q far upstream
and far downstream are the same, the parameters c and h satisfy the following system
of equations

c2

2
+ h= R, ch=Q, (5.9a,b)

where R and Q are known wave properties. With the help of some results obtained in
the works by Keady & Norbury (1975) and Benjamin (1995), it has been demonstrated
in paper 1 that system (5.9) always has two solutions, (c1, h1) and (c2, h2). For the
first solution, the Froude number Fr = c1/

√
h1 < 1, for the second one, the Froude

number Fr = c2/
√

h2 > 1. So, for the first solution, the upstream flow is subcritical,
for the second one, it is supercritical.

In this paper, for convenience, we rename the designations for these solutions. The
first, subcritical solution, we designate simply as (c, h), and the second, supercritical
one, we designate as (cconj, hconj), taking into consideration that two uniform streams
whose speed c and depth h satisfy (5.9) with the same R and Q are called conjugate
streams (see, e.g. Keady & Norbury 1975). Now, the subcritical Froude number
is simply Fr, and supercritical one is Frconj. The sketches of the subcritical and
supercritical flows are shown in figure 3(a,b). It is worthwhile to stress that for both
cases the waves far downstream are the same, but the bodies which generate these
waves can differ in shape, size and their location with respect to the bottom.
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On steady downstream waves and the wave resistance – Stokes’ method 403

In paper 1, we have derived explicit analytical formulae (4.11), (4.12), (3.28b,c) for
the solutions to system (5.9). In dimensionless form, the formulae can be rewritten as

h= 2R
Fr2 + 2

, c2 = Fr2h, (5.10a,b)

hconj = κh, c2
conj =

Fr2h
κ2

, Fr2
conj =

Fr2

κ3
, (5.11a−c)

where

κ = Fr2

4

(
1+

√
1+ 8

Fr2

)
< 1, (5.12a)

Fr2 = 6p sin
[

1
3

arcsin
(

1
p

)]
− 2< 1, p=

√
8R3

27Q2
> 1. (5.12b,c)

5.1. Analytical formulae for Rw in the subcritical case

By making use of (5.8), (5.10), (5.12) and the expansions for c2
a, c2

b, Λ, V , the wave
resistance for the subcritical case can be easily computed. Indeed, with the help of
the identity (5.3) and equations (2.20), (3.3a), (5.8) (5.10a), we derive that

Rw = 3V − 3
2
δ2

1 + ha(1− Fr2
b)δ1, δ1 = ha

Fr2 − Fr2
b

Fr2 + 2
, p=

√
(c2

b + 2ha)3

27c2
a(Λ/2− ha)2

,

(5.13a−c)

where Frb is the Froude number based on the mean depth ha and the root-mean-square
bottom velocity cb:

Frb = cb√
ha
. (5.14)

Now, if the geometric parameters of the waves a and ha are given, we compute the
parameter p by (5.13c), Fr2 by (5.12b), Frb by (5.14), δ1 by (5.13b) and, finally, Rw by
(5.13a). In figure 4, we compare the results obtained by this analytical approach (long-
dashed lines) with accurate numerical computations of Rw carried out by the method
of Maklakov (2002) (solid lines). The long-dashed lines are plotted only for ha <∞,
because for ha =∞ such a multistep technique of computing Rw cannot be applied.
As one can see, if the waves are not very steep, then even for small depths the results
are in good agreement. The variable of the abscissa axes for the graphs of figure 4
is the waves steepness a/π.

Application of formulae (5.12)–(5.14) for computing Rw leaves some feeling of
dissatisfaction caused by the necessity of taking several steps before getting the final
result for Rw. It seems that it would be better to obtain a direct asymptotic expansion
of Rw in powers of a. A simple way to do this is to rewrite system (5.9) by the use
of (2.20), (3.3a) and (5.3) in the form

c2 − 2δ1 = c2
b, c(ha − δ1)= ca(ha −Λ/2). (5.15a,b)
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FIGURE 4. Comparison of analytical formulae with accurate numerical results for different
N and ha/2π=∞, 0.3, 0.25, 0.2, 0.15 (1–5). Solid lines, numerical method of Maklakov
(2002); long-dashed lines, analytical formulae (5.12)–(5.14); dashed lines, the direct
asymptotic expansion of Rw in powers of a.

Excluding the unknown c from system (5.15), we obtain the following cubic equation
with respect to δ1:

(c2
b + 2δ1)(ha − δ1)

2 − c2
a(ha −Λ/2)2 = 0, (5.16)

where the expansions for c2
a, c2

b and Λ are known. To find an expansion for δ1, we
proceed in the same manner as in solving (4.8) or (4.11), namely, let

δ1 =
(N−1)/2∑

n=1

d2na2n, (5.17)

where d2n are unknown coefficients. Substituting (5.17) into (5.16) and expanding the
left-hand side of (5.16) in powers of a up to the power N inclusively, we obtain an
(N− 1)-degree polynomial in even powers of a with (N− 1)/2 coefficients depending
on the parameters ε = exp(−2ha), ha and the unknowns d2n. The coefficient at a0 in
this polynomial is zero. Equating the remainder coefficients to zero, we sequently find
d2, d4, . . . , dN−1, which are now rational functions not only of ε but of ε and ha. After
determining the expansion for δ1, we find the expansion for c by means of (5.15a).
Inserting the obtained values of h = ha − δ1 and c into (5.8), we find the expansion
for the wave resistance Rw. Another way to do the same is to insert δ1 directly into
(5.13a).

It needs to be emphasized that the values of h and c, found in such a manner,
correspond to the subcritical solution to the system (5.9). This is a consequence of the

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2017.62
Downloaded from https:/www.cambridge.org/core. Kazan Federal University, on 23 Feb 2017 at 12:38:29, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.62
https:/www.cambridge.org/core


On steady downstream waves and the wave resistance – Stokes’ method 405

representation (5.17). Indeed, if the amplitude a→ 0, then we conclude from (5.17)
that δ1→ 0. In this case, as follows from (5.15a), c2→ c2

b. Taking into account that,
when a→ 0, the velocity ca satisfies the ordinary dispersion relation of the linear
theory and ca = cb, we find that

c2 = 1− ε
1+ ε = tanh ha. (5.18)

This means that the Froude number Fr = c/
√

ha < 1 as a → 0. Hence, the
representation (5.17) corresponds to the subcritical branch of solutions to system (5.9).

Formulae (B 6) and (B 7) of appendix B present these direct asymptotic expansions
for Rw and δ1 up to a6. If we take (B 6) only up to a2, then

Rw = a2

[
haε

(ε− 1)(ε+ 1)
+ 1

4

]
= a2

4

(
1− 2ha

sinh 2ha

)
, (5.19)

which exactly coincides with Kelvin’s formula for Rw obtained from the linear wave
theory (see Kelvin 1887). Formula (B 6) generalizes the deep water fourth-order result
by Duncan (1983):

Rw = 1
4 a2 − 3

8 a4, (5.20)

on to the case of finite depth up to a6.
We should remark that the mixture of ha and ε = exp(−2ha) in the coefficients at

an makes the expansions for Rw and δ1 much longer than the previous ones when
the coefficients depend only on ε= exp(−2ha). For example, the expansion for Rw at
N = 21 after conversion to LaTeX takes approximately 1300 kilobytes (compare with
75 kilobytes for c2

a), which corresponds to approximately several hundreds of journal
pages.

In figure 4, the dashed lines are the results of computations of Rw by its direct
expansion in powers of a. As one can see, for small depths (ha/2π= 0.2, 0.15) the
results are worse than those obtained by the multistep method (long-dashed lines in
figure 4). An explanation to this is the behaviour of the function Fr2(p) defined by
formula (5.12b). Indeed, the same direct asymptotic expansion of Rw can be found
by expanding the parameter p, defined by (5.13c), and after that, by expanding the
function Fr2(p) in the Taylor series at the point p0, where p0 is the value of p at
a= 0. The graph of the function Fr2(p) is shown in figure 5(a), and as one can see,
near the point p = 1 the derivatives of Fr2(p) are very large. As can be seen from
figure 5(b), for ha/2π = 0.2, 0.15 the values of p0 is very close to unity. So it is
difficult to expect a good result in the case of shallow water for the direct expansion
of Rw when we have such an unpleasant behaviour of Fr2(p) in the vicinity of p= 1.

The infinite depth case is also subcritical with the Froude number Fr= 0< 1. For
this case formulae (B 8)–(B 11) of appendix B present asymptotic expansions up to
a21 for Rw, c2 = c2

a = c2
b, V and T . Dallaston & McCue (2010) presented the formula

for c2
a to a14 (equation (11) of their paper). Comparison shows that all coefficients

in their formula coincide with those of (B 9). In figure 4, the dashed lines labelled
by number 1 demonstrate the results of computations of Rw by formula (B 8) in
comparison with accurate numerical computations by the method of Maklakov (2002)
(solid lines). As one can see, the coincidence is not so bad, especially at N = 21.
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FIGURE 5. Graph of the function Fr2(p) and the dependence of p on a/π for ha/2π=0.3,
0.25, 0.2, 0.15 (1–4), computed by the numerical method of Maklakov (2002).

5.2. Supercritical case
Free-surface flows with periodic downstream waves generated by a supercritical
stream past an obstacle were discovered by Dias & Vanden-Broek (2002), and further
examples were computed by a number of authors (see, e.g. Dias & Vanden-Broek
2004; Binder, Vanden-Broek & Dias 2009). In figure 3(a,b), we demonstrate the
sketches of subcritical and supercritical flows. For the supercritical case, the total
pressure force exerted to the obstacle from the side of fluid we denote Rwconj. As
has been rigorously proved in paper 1, the values of Rw (subcritical case) are always
positive, but those of Rwconj (supercritical case) are negative, which makes doubtful
the physical realizability of flows in figure 3(b). Now we want to estimate the
contribution of periodic waves to these negative values.

Consider the dimensionless form of the wave parameter introduced by Benjamin &
Lighthill (1954), namely, the flow force

S=
∫ η(x)

0
[u2(x, y)+ p] dy. (5.21)

It follows from the momentum equation that

Rw = Su(c, h)− S, Rwconj = Su(cconj, hconj)− S, (5.22a,b)

where Su(c, h) is the flow force S for a uniform stream with speed c and depth h.
This leads to the formula

Rwconj = Rw − [Su(c, h)− Su(cconj, hconj)]. (5.23)

The difference in square brackets is just the wave resistance for a so-called hydraulic
fall: a waveless free-surface flow which is subcritical far upstream and supercritical
far downstream (see Forbes 1988; Shen & Shen 1990). The sketch of the hydraulic
fall is shown in figure 3(c). We denote the wave resistance for such flows by RHF, its
value being given by formula (3.28a) of paper 1. Thus, we come to the equations

Rwconj = Rw − RHF, RHF = h2

2
(1− κ)3

1+ ~ , (5.24a,b)

where κ = hconj/h is defined by (5.12a). Since κ < 1, we have RHF > 0, and according
to the corollary to Proposition 1 of paper 1 (p. 299), RHF > Rw. So, the contribution
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FIGURE 6. Dependences of Rw (solid lines) and Rwconj (dashed lines) on the wave
steepness a/π for different depths ha/2π = 0.15–0.55 with a step of 0.05 (1–9).
Computations have been carried out by the method of Maklakov (2002).

of periodic wave train to the wave resistance is positive independently of the case,
subcritical or supercritical. It is curious that all free flows shown in figure 3 are
nonlinear, but their wave resistances are connected by the linear relationship (5.24a).

We do not give any expansions for the supercritical case due to our doubtfulness of
its physical realizability, but for completeness we plot the graphs of Rw (solid lines)
together with its negative counterpart Rwconj (dashed lines) in figure 6 for the depths
ha/2π = 0.15–0.55 with a step of 0.05. The computations have been carried out by
the method of the paper of Maklakov (2002). As one can see from the graphs, as the
depths increase, the moduli of Rwconj < 0 increase much faster than those of Rw > 0,
creating a significant ‘wave thrust’.

5.3. Comparison with Fenton’s fifth-order wave theory
Fenton (1985) published a fifth-order wave theory based on the first Stokes method
and presented explicit analytical expansions of wave properties in powers of a with
coefficients depending on ha. Since our expansions have the same structure but have
been obtained by the second Stokes method, it is useful to compare the results of these
independent calculations. Table 1 of Fenton’s work contains 22 coefficients which take
part in formulae for the potential φ(x, y), mean velocity ca, shape of free surface η(x),
volume flux Q and Bernoulli constant R. These 22 coefficients have a rather complex
structure and depend mainly on the parameter S = sech(2ha) (do not confuse this S
with the flow force, defined by (5.21)). Taking into account that

ca =
√

c2
a, Q= ca(ha −Λ/2), R= c2

b/2+ ha (5.25a−c)

and using (B 1)–(B 3), we have obtained the corresponding expansions and compared
them with those presented by Fenton. The results turn out to be in full coincidence.

To compare the mean potential energy V , given by (B 4), we have used the
explicit analytical expression for η(x) of Fenton’s work. By means of (5.1a), we have
calculated V to a4 and compared the result with (B 4). Again, we have had the same
full coincidence.

6. Concluding remarks
In this paper, for steady periodic gravity waves in water on finite depth, we have

derived a quadratic system of equations with respect to the coefficients of the second
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Stokes method and developed an effective computer algorithm for solving the system.
Making use of exact arithmetics and symbolic calculations, we have obtained explicit
analytical expansions in powers of the wave amplitude a for the wave resistance and
other wave properties to a21. The coefficients of these expansions depend only on the
mean wave depth ha.

To our regret, the expansions of order higher than seven are too long to be printed,
and in appendix B to the paper we have presented the results only up to a7. Having
taken a look at these formulae, the reader can easily imagine the length of expansions
of order a9 and higher. In spite of this evident deficiency, the formulae have also
an important advantage: because even their LaTeX forms for printout have been
generated by computer, they cannot contain any typos or calculational errors. On the
other hand, these long analytical formulae, which sometimes take several hundreds
of journal pages, are a logical consequence of accurate application of the famous
analytical Stokes approach.

A usual way to enhance the convergence of the high-order Stokes expansions is
the use of Padé approximants. However, this approach is effective when the Stokes
coefficients are numbers, decimal as in Schwartz (1974) and Cokelet (1977) or rational
as in Dallaston & McCue (2010). In our case, the coefficients are rational functions
of ε= exp(−2ha) (at best) or a mixture of ha and ε (at worst). By specifying a and
ha, we are able to compute these coefficients and represent them as numbers with any
quantity of decimal places, but then all analyticity of our approach will be lost and
we return to the previous investigations.

We have compared our asymptotic expansions with those obtained by the fifth-order
theory of Fenton (1985) and found that the results are in full coincidence. Comparison
also has been made with the results obtained in paper 1, where the waves resistance
Rw was computed by the accurate numerical method of the work by Maklakov (2002).
The conclusion is as follows: analytical expansions to a7 can be applied if the depth-to-
wavelength ratio is not less than 0.15 and the wave amplitude is approximately 60 %
of its limiting value.

All expansions used in the paper are stored in the supplementary materials and
are available at https://doi.org/10.1017/jfm.2017.62 in the form of Mathematica
expressions. The order of the stored expressions is 21. The materials contain the file
‘Instruction.nb’, which explains how to use the stored information.
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Appendix A. Proofs of formulae (3.3), (3.4) and (3.9)
First, we prove formula (3.3a). In terms of the Stokes coefficients the mean depth

ha = 1
2π

∫ 2π

0

(
− log r0 +

∞∑
n=1

βnyn cos nγ

)(
1+

∞∑
n=1

nαnyn cos nγ

)
dγ . (A 1)

Opening the brackets and integrating leads to (3.3a) and (3.4a).

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2017.62
Downloaded from https:/www.cambridge.org/core. Kazan Federal University, on 23 Feb 2017 at 12:38:29, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/jfm.2017.62
https://doi.org/10.1017/jfm.2017.62
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.62
https:/www.cambridge.org/core


On steady downstream waves and the wave resistance – Stokes’ method 409

Now, we prove (3.3b). For the root-mean-squared depth Ha we have

H2
a =

1
2π

∫ 2π

0

(
− log r0 +

∞∑
n=1

βnyn cos nγ

)2 (
1+

∞∑
n=1

nαnyn cos nγ

)
dγ . (A 2)

Again, we open the brackets and integrate to obtain

H2
a = log2 r0 −Λ log r0 + Λ1

2
+ G

2
, (A 3)

where Λ1 is defined by (3.4b), and

G= 1
π

∫ 2π

0

( ∞∑
n=1

βnyn cos nγ

)2

︸ ︷︷ ︸
f (γ )

( ∞∑
n=1

nαnyn cos nγ

)
dγ . (A 4)

The first factor of the integrand in (A 4) we denote by f (γ ). Then

f (γ ) =
( ∞∑

n=1

βnyn cos nγ

)( ∞∑
m=1

βmym cos mγ

)

= 1
2

∞∑
n=1

βnyn

∞∑
m=1

βmym[cos(n+m)γ + cos(n−m)γ ]. (A 5)

Representing f (γ ) as a Fourier series in cosine, we obtain

f (γ ) = Λ1

2
+ 1

2

∞∑
k=1

cos kγ

(∑
m+n=k

βnβmynym +
∑

n−m=k

βnβmynym

+
∑

m−n=k

βnβmynym

)
, m, n= 1, 2, 3, . . . , (A 6)

where for the sums in brackets, the lower equalities define the indexes which take part
in forming the summands. Inserting this expression for f (γ ) in (A 4) and taking into
account that ∑

n−m=k

βnβmynym =
∑

m−n=k

βnβmynym, k,m, n= 1, 2, 3, . . . , (A 7)

after integration we get

G=
∞∑

k=1

kαkyk

(
1
2

∑
m+n=k

βnβmynym + A

)
, (A 8)

where

A=
∞∑

k=1

kαkyk

∑
n−m=k

βnβmynym. (A 9)
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In the sum A, the index n changes from 1 to infinity, and at fixed n we have m+ k=n.
Now, we reorder the summation by forming the outer sum over n. This gives

A=
∞∑

n=1

βnyn

∑
m+k=n

kαkβmykym =
∞∑

k=1

βkyk

∑
m+n=k

nαnβmynym, (A 10)

where to obtain the last equality we swap indexes k and n. Inserting this expression
for A into (A 8) and taking into account that k=m+ n, we infer

G=
∞∑

k=2

yk

∑
m+n=k

σm,nymyn, (A 11)

where

σm,n = 1
2(m+ n)αm+nβmβn + nαnβm+nβm. (A 12)

Here, the summation starts with k= 2 since m+ n= k > 2. To make the coefficients
in the inner sum symmetric with respect to m and n, we introduce

Γm,n = (σm,n + σn,m)/2. (A 13)

Then

G=
∞∑

k=2

yk

∑
m+n=k

Γm,nymyn =
∞∑

k=2

yk

k−1∑
n=1

Γk−n,nynyk−n, Γm,n = Γn,m. (A 14a,b)

After a little algebra, it is possible to demonstrate that Γm,n is defined by equation
(3.5b). This finalizes the proof of formulae (3.3b) and (3.4c). It is to be noted that
reordering the summation in (A 9) is the key point for obtaining a compact expression
for G.

Now we prove the equality (3.9). We denote

Ck =
k−1∑
m=1

Γk−m,mymyk−m, k= 2, 3, 4, . . . (A 15)

It is easy to see that

∂Ck

∂yn
=
{

0 if n> k− 1⇔ k< n+ 1,
2Γk−n,nyk−n if n 6 k− 1⇔ k > n+ 1.

(A 16)

Now,

∂G
∂yn
=

n−1∑
m=1

Γn−m,mymyn−m + 2
∞∑

k=n+1

Γk−n,nykyk−n. (A 17)
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If we put in the second sum of (A 17) that k− n=m, we come to (3.9). It is worth
noting that if n= 1, then the first sum on the right-hand side of (3.9) vanishes.

Appendix B. Eleven asymptotical expansions for wave properties

The expansions below have been generated and converted into LaTeX by computer.
For this reason, they cannot contain any typos or calculational errors. A principle of
choosing the order of expansions has been very simple: we present an expansion only
if any fraction in it takes not more than one line of the journal page. The notation
Pn(x1, x2, . . . , x[n/2]+1) is that for palindromic polynomials of degree n in powers of ε,
the arguments being the first half of coefficients.

B.1. Expansions for finite depth with coefficients depending only on ε= exp(−2ha)

c2
a = −

a6P20(9, 72,−2767,−2614, 114687, 491970, 1155180, 2005398, 2928016, 3608614, 3897270)
6(ε− 1)15(ε+ 1)P2(2, 1)P2(3, 4)

+ a4P10(−1,−7, 39, 400, 166, 426)
2(ε− 1)9(ε+ 1)

− a2P4(1, 0, 16)
(ε− 1)3(ε+ 1)

− ε− 1
ε+ 1

, (B 1)

c2
b = −

a6P20(9,−132,−1954, 7640, 127743, 496104, 1139076, 2002512, 2912560, 3620356, 3886572)
6(ε− 1)15(ε+ 1)P2(2, 1)P2(3, 4)

+ a4P10(−1,−3, 71, 296, 302, 290)
2(ε− 1)9(ε+ 1)

− a2P4(1, 2, 12)
(ε− 1)3(ε+ 1)

− ε− 1
ε+ 1

, (B 2)

Λ = −a6(ε+ 1)P16(−13,−56, 671, 2866, 7542, 10250, 16461, 16724, 20710)
2(ε− 1)13P2(2, 1)P2(3, 4)

+ a4(ε+ 1)P2(1,−1)P4(1, 2, 12)
(ε− 1)7

− a2(ε+ 1)
ε− 1

, (B 3)

V = a6P16(−19,−49, 376, 2061, 5840, 11203, 16032, 19281, 20150)
8(ε− 1)12P2(2, 1)P2(3, 4)

− a4P2(1, 4)P4(1, 0, 4)
8(ε− 1)6

+ a2

4
, (B 4)

Tca =
a6P16(−19,−25, 108, 473, 4656, 10679, 17532, 20313, 22166)

8(ε− 1)12P2(2, 1)P2(3, 4)

− 3a4εP4(1,−2, 8)
4(ε− 1)6

+ a2

4
, (B 5)
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B.2. Expansions for finite depth with coefficients which depend on a mixture of
ε= exp(−2ha) and ha

Rw = a6

[
h4

aε(ε+ 1)2P16(−68, 135, 3756, 11729, 21080, 25063, 28084, 25953, 27736)
4(ε− 1)13P2(2, 1)P2(3, 4)(haε+ ha + ε− 1)3

+ h3
a(ε+ 1)P18(−19,−543, 1461, 29124, 91280, 158624, 198664, 220060, 223558, 229182)

8(ε− 1)12P2(2, 1)P2(3, 4)(haε+ ha + ε− 1)3

+ h2
aP18(−51,−754, 3161, 42450, 131460, 225936, 288948, 329998, 351778, 364548)

8(ε− 1)11P2(2, 1)P2(3, 4)(haε+ ha + ε− 1)3

+ haP18(−39,−406, 3052, 27914, 82337, 142176, 187347, 221974, 244551, 255788)
8(ε− 1)10(ε+ 1)P2(2, 1)P2(3, 4)(haε+ ha + ε− 1)3

+ P16(−8,−67, 2264, 9339, 16832, 23481, 28248, 32623, 33776)
16(ε− 1)9P2(2, 1)P2(3, 4)(haε+ ha + ε− 1)3

]
+ a4

[
− h2

aεP6(1, 10,−7, 10)
(ε− 1)7(haε+ ha + ε− 1)

− haP8(3, 14, 118,−10, 38)
8(ε− 1)6(ε+ 1)(haε+ ha + ε− 1)

− P6(2, 1, 11,−10)
4(ε− 1)5(haε+ ha + ε− 1)

]
+ a2

[
haε

(ε− 1)(ε+ 1)
+ 1

4

]
, (B 6)

δ1 = a6

[
h5

aε(ε+ 1)4P16(−68, 135, 3756, 11729, 21080, 25063, 28084, 25953, 27736)
4(ε− 1)13P2(2, 1)P2(3, 4)(haε+ ha + ε− 1)5

+ h4
a(ε+ 1)3P18(19,−197, 655, 15018, 49952, 61276, 65136, 29054, 33950, 8674)

4(ε− 1)12P2(2, 1)P2(3, 4)(haε+ ha + ε− 1)5

+ h3
a(ε+ 1)2P18(170,−75, 2588, 38862, 127206, 80752,−56918,−244606,−295670,−341418)

8(ε− 1)11P2(2, 1)P2(3, 4)(haε+ ha + ε− 1)5

+ h2
a(ε+ 1)P18(270, 709, 960, 11402, 18362,−112344,−354978,−581050,−695942,−721978)

8(ε− 1)10P2(2, 1)P2(3, 4)(haε+ ha + ε− 1)5

− haP18(−140,−664, 2335, 14944, 56641, 163208, 316859, 452336, 532369, 553024)
8(ε− 1)9P2(2, 1)P2(3, 4)(haε+ ha + ε− 1)5

− (ε+ 1)P16(50,−61, 3188, 10533, 27616, 44927, 63932, 70649, 76732)
16(ε− 1)8P2(2, 1)P2(3, 4)(haε+ ha + ε− 1)5

]
+ a4

[
−h3

aε(ε+ 1)2P6(1, 10,−7, 10)
(ε− 1)7(haε+ ha + ε− 1)3

− 3h2
aε(ε+ 1)P4(1, 14, 24)

2(ε− 1)4(haε+ ha + ε− 1)3

+ 3haP8(1, 0, 0, 32, 78)
8(ε− 1)5(haε+ ha + ε− 1)3

+ (ε+ 1)P6(3, 2, 13, 0)
4(ε− 1)4(haε+ ha + ε− 1)3

]
+ a2

[
haε

(ε− 1)(haε+ ha + ε− 1)
− ε+ 1

2(haε+ ha + ε− 1)

]
. (B 7)

B.3. Expansions for infinite depth

Rw = a2

4
− 3a4

8
− 19a6

48
− 2597a8

2880
− 559733a10

201600
− 9766021889a12

1016064000

− 1007540062126771a14

28165294080000
− 1417604531750289802727a16

10149645374668800000

− 2063615976870165517551724279a18

3657526207215648768000000

− 52376619112355935298282434064177671a20

22406444448547930230620160000000
, (B 8)
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c2 = c2
a = c2

b = 1+ a2 + a4

2
+ a6

4
− 22a8

45
− 115069a10

25200
− 6379033039a12

254016000

− 875167353344611a14

7041323520000
− 1509490905485738054687a16

2537411343667200000

− 2573919846675736709873575159a18

914381551803912192000000

− 74381757900412915700748130785581431a20

5601611112136982557655040000000
, (B 9)

V = a2

4
− a4

8
− 19a6

48
− 3077a8

2880
− 702113a10

201600
− 12793118129a12

1016064000

− 1366685377769731a14

28165294080000
− 1981974995491975924247a16

10149645374668800000

− 2965179893909091084219806119a18

3657526207215648768000000

− 77199563300878281492652707790632631a20

22406444448547930230620160000000
, (B 10)

T = a2

4
− 19a6

48
− 3317a8

2880
− 773303a10

201600
− 14306666249a12

1016064000

− 1546258035591211a14

28165294080000
− 2264160227362818985007a16

10149645374668800000

− 3415961852428553867553847039a18

3657526207215648768000000

− 89611035395139454589837844653860111a20

22406444448547930230620160000000
. (B 11)
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